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The effect of the downstream pressure (defined here as the wake pressure behind the
tail of the reflecting wedge) on shock wave reflection in steady flows is investigated
both numerically and analytically. The dependence of the shock wave configurations
on the downstream pressure is studied. In addition to the incident-shock-wave-
angle-induced hysteresis, which was discovered a few years ago, a new downstream-
pressure-induced hysteresis has been found to exist. The numerical study reveals that
when the downstream pressure is sufficiently high, an inverse-Mach reflection wave
configuration, which has so far been observed only in unsteady flows, can be also
established in steady flows. Very good agreement between the analytical predictions
and the numerical results is found.

1. Introduction
As indicated by Ben-Dor (1991), two shock-wave-reflection configurations are

possible in steady flows: regular reflection (RR) and Mach reflection (MR). They are
shown in figures 1(a) and 1(b), respectively. The RR wave configuration consists of
two shock waves: the incident shock wave, i, and the reflected shock wave, r. They
meet at the reflection point, R, which is located on the reflecting surface. The flow
states are (0) ahead of i, (1) behind it, and (2) behind r. The angle of the incident shock
wave, φ1, of a regular reflection is sufficiently small that the streamline deflection,
θ1, caused by the incident shock wave can be cancelled by the opposite streamline
deflection, θ2, caused by the reflected shock wave. Therefore, the boundary condition
of a regular reflection is θ1 − θ2 = 0. The MR wave configuration consists of three
shock waves: the incident shock wave, i, the reflected shock wave, r, and the Mach
stem, m; and one slipstream, s. They all meet at a single point, the triple point, T.
The Mach stem is usually a curved shock wave which is perpendicular to the line
of symmetry at the reflection point R. The flow states are (0) ahead of i and m, (1)
behind i, (2) behind r, and (3) behind m. Unlike the case of an RR where the net
deflection of the streamline is zero, in the case of an MR the net deflection of the
streamline is not necessarily zero and as a result the streamlines behind the triple
point can be directed towards the line of symmetry. Since the streamlines on both
sides of the slipstream must be parallel, the boundary condition across the slipstream
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Figure 1. Schematic illustration of the wave configuration and definition of
relevant parameters of (a) a regular reflection and (b) a Mach reflection.

of a Mach reflection is θ1 − θ2 = θ3, where θ3 is the streamline deflection caused by
the Mach stem.

Two extreme angles of incidence, φ1, namely φN1 , the von Neumann angle, and
φD1 , the detachment angle, at which the RR↔MR transition can occur, are known.
Theoretically, an RR wave configuration is not possible for φ1 > φD1 and an MR
wave configuration is not possible for φ1 < φN1 . In the range φN1 6 φ1 6 φD1 both RR
and MR wave configurations are theoretically possible. For this reason this range is
known as the dual-solution domain.

The existence of the dual-solution domain led Hornung, Oertel & Sandeman (1979)
to hypothesize that a hysteresis can exist in the RR↔MR transition. Experimental
attempts by Hornung & Robinson (1982), in a following study, to verify this hysteresis
failed. The fact that there was no experimental evidence of this hypothesis led them,
as well as all the other researchers, to believe that the RR wave configuration was
unstable in the dual-solution domain.

Based on the principle of minimum entropy production, Li & Ben-Dor (1996a)
showed analytically that the RR wave configuration is stable in almost the entire
dual-solution domain. Soon after this, the hysteresis phenomenon in the RR↔ MR
transition was recorded experimentally for the first time by Chpoun et al. (1995).†
Then the existence of both RR and MR wave configurations in the dual-solution
domain (for the same flow Mach numbers, M0, and reflecting wedge angles, θw ,
but different distances from the line of symmetry) was demonstrated numerically by
Vuillon, Zeitoun & Ben-Dor (1995) using an FCT-based algorithm. Following these
studies numerical simulations based on the DSMC method (Ivanov, Gimelshein &
Beylich 1995; Ivanov et al. 1996, and Ben-Dor, Elperin & Golshtein 1997) and the

† Some researchers (see Hornung 1997 and references therein and Skews 1997) have been claiming
that the experiments of Chpoun et al. (1995) were seriously contaminated by transverse flow effects
(three-dimensional effects) and as a consequence should not be used as experimental evidence for
proving the existence of hysteresis in a two-dimensional flow. The extent of these effects is yet to be
studied and understood.
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Figure 2. Schematic illustration of a Mach reflection wave configuration for the case pw < pC and
definition of relevant parameters; pw is the downstream pressure and pC is the pressure at point C.

TVD algorithm (Ivanov et al. 1996, and Shirozu & Nishida 1995) demonstrated the
hysteresis phenomenon, for identical initial conditions.

Both Vuillon et al. (1995) in their numerical study and Chpoun et al. (1995)
in their experimental study clearly demonstrated that the MR wave configuration
depends on the geometrical parameters associated with the experimental set-up. This
dependence, which was first suggested by Henderson & Lozzi (1979) and later by
Hornung & Robinson (1982), was recently verified in Li & Ben-Dor’s (1997) analytical
investigation of the shock wave reflection in steady flows. Their analysis was limited
to the case in which the triple point of the MR wave configuration was free of
downstream influences. Li & Ben-Dor (1996a) assumed a similar limitation when
they applied the principle of minimum entropy production to understand better
the stability of shock wave reflections in steady flows. These findings together with
Henderson & Lozzi’s (1979) conclusion that the ‘transition between RR and MR can
be promoted or suppressed anywhere in the range φN1 6 φ1 6 φD1 by suitable choice
of downstream boundary conditions’ were the motivation for our decision to conduct
analytical and numerical studies, in order to understand better how the downstream
pressure affects shock wave reflection in steady flows. Preliminary findings of this
study which were reported recently by Ben-Dor et al. (1997a) revealed a downstream-
pressure-induced hysteresis. Note that the term downstream pressure in this study
does not refer to the pressure downstream on the centreline but to the wake pressure
behind the wedge. Consequently, the aim of this study was to better understand
this downstream-pressure-induced hysteresis by investigating it both analytically and
numerically.

2. The analytical study
2.1. The flow field analysis

We begin by introducing the governing equations for the case in which the triple
point of the Mach reflection is isolated from downstream effects. As will be shown
subsequently, this is the case as long as the downstream pressure, pw , is smaller than
the pressure at point C which is defined in figure 2. A two-dimensional analytical
study of this case was presented recently by Li & Ben-Dor (1997).

A detailed Mach reflection wave configuration together with the definition of rele-
vant parameters is shown in figure 2. As mentioned earlier the MR wave configuration



216 G. Ben-Dor, T. Elperin, H. Li and E. Vasiliev

consists of an incident shock, i, a reflected shock, r, a slightly curved Mach stem,
m, and a contact surface (slipstream), s. The flow immediately behind the Mach
stem (which is nearly a normal shock wave) is subsonic. The Mach stem must be
perpendicular to the plane of symmetry at its foot, point R. The interaction of the
reflected shock wave, r, with the centred expansion fan which emanates from the trail-
ing edge of the shock-generating wedge (point G) results in a transmitted-reflected
shock wave, r′, transmitted expansion waves and an entropy-layers region. Details of
the analysis of the interaction of a shock wave with an expansion fan can be found
in Li & Ben-Dor (1996b). The transmitted expansion waves which interact with the
slipstream, s, cause the pressure in region (3), to drop in the streamwise direction. This
in turn accelerates the flow to a supersonic condition. As a result, the cross-sectional
area of the streamtube formed by the slipstream and the plane of symmetry decreases
first to a minimum at which the flow reaches sonic conditions, and then increases
again in the region of accelerating supersonic flow. A subsonic pocket, bounded by
TFEKRT, is therefore formed in an otherwise supersonic flow. The flow downstream
of the line GCDEK is supersonic, and hence is isolated from the subsonic pocket. The
size and shape of this pocket (eventually the Mach stem height) are solely controlled
by the length w of the upper boundary of region (1) and the distance, Ht, between the
trailing edge of the reflecting wedge and the plane of symmetry. It should be noted
here that the concept that the sonic throat downstream of the Mach stem determines
the position of the Mach stem was first mentioned by Hornung & Robinson (1982).

Li & Ben-Dor (1997) analytically predicted the normalized Mach stem height,
Hm/w, and obtained, for the case in which the flow field is free of the downstream-
pressure influences, a dependence of the form

Hm/w = f(γ,M0, θw, Ht/w), (1)

where γ,M0, θw, Hm,Ht and w are the specific heats ratio, the incoming flow Mach
number, the reflecting wedge angle, the Mach stem height, the exit cross-sectional
area at the trailing edge, and the length of reflecting wedge, respectively.

2.2. The governing questions

For the flow field described in § 2.1, the Mach reflection wave configuration does
not depend on the flow parameters in the regions downstream of the line GCDEK
(see figure 2) provided it is free of downstream influences. Consequently, only the
governing equations for solving the relevant flow regions shown in figure 2 are needed
and presented in the following. For clarity the part of the figure showing the flow
field relevant to the following discussion is shown enlarged in figure 3.

The region GBC is a Prandtl–Meyer fan, therefore

ν(MC)− ν(M1) = θw − α (2)

and

pC = p1

[
2 + (γ − 1)M2

1

2 + (γ − 1)M2
C

]γ/(γ−1)

, (3)

where MC and pC are the flow Mach number and the pressure along the characteristic
GC, α is the flow direction relative to the horizontal direction, and ν(M) is the Prandtl–
Meyer function, i.e.

ν(M) =

(
γ + 1

γ − 1

)1/2

arctan

[
(γ − 1)(M2 − 1)

γ + 1

]1/2

− arctan (M2 − 1)1/2. (4)
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Figure 3. Enlargement of a section of the schematic drawing shown in figure 2 and
definition of relevant parameters.

Across the curved shock wave at point C, one gets

Mc′ = F(γ,MC, φC), (5)

θc′ = G(γ,MC, φC), (6)

pc′ = pcH(γ,MC, φc) (7)

where MC ′ , θC ′ and pC ′ are the flow Mach number, the flow deflection angle and the
pressure immediately behind the curved reflected shock wave at point C, respectively.
The functions F , G and H that relate the flow properties on both sides of an oblique
shock wave are

Mj = F(γ,Mi, φj) =

{
1 + (γ − 1)M2

i sin2 φj +
[

1
4
(γ + 1)2 − γ sin2 φj

]
M4

i sin2 φj
}1/2[

γM2
i sin2 φj − 1

2
(γ − 1)

]1/2 [ 1
2
(γ − 1)M2

i sin2 φj + 1
]1/2 ,

(8)

θj = G(γ,Mi, φj) = arctan

[
2 cot φj(M

2
i sin2 φj − 1)

M2
i (γ + cos 2φj) + 2

]
(9)

and
pj

pi
= H(γ,Mi, φj) =

1

γ + 1

[
2M2

i sin2 φj − (γ − 1)
]
, (10)

where Mi and Mj are the flow Mach numbers ahead of and behind the oblique shock
wave, respectively, pi and pj are the flow pressure ahead of and behind the oblique
shock wave, respectively, φj is the angle of incidence and θj is the deflection angle.

In the region BCJNDB in figure 2 (which is known as an entropy region), there is a
continuous change in the entropy as the reflected shock curves through the expansion
fan, as well as a continuous change in the flow direction and the pressure. Although
the entropy varies from one streamline to another it is constant along any arbitrarily
chosen streamline, in this region, since it passes through an expansion wave region.
One can, therefore, imagine the region BCJNDB to consist of an infinite number of
such streamlines. Since the flow is steady, the streamlines (entropy layers) should be
parallel downstream of the last characteristic JN, i.e. the flow directions are the same
and the pressures are equal at points J and N. Similarly, the flow directions and the
pressures at points C and D are also identical. This can be seen from the fact that
the points C and D can eventually replace points J and N, respectively, by increasing
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the downstream pressure pw . Note that the flow properties at points C and D are
independent of pw . Therefore, the overall changes of the flow properties across the
entire entropy-layer region result in a situation in which the flow directions at points
C and D along the curve CD are parallel and the pressures, at these points, are the
same, i.e.

α = θC ′ (11)

and

pC ′ = pD, (12)

where pD is the pressure at point D.
When the transmitted expansion waves reach the slipstream, s, they partially reflect

from it and partially transmit through it. As shown in Appendix A of Li & Ben-
Dor (1997), under the first-order approximation, the reflected expansion waves are
very weak and hence can be neglected. This neglect is also justified by all available
experimental evidence, to the best of the authors’ knowledge. Thus, region BFED can
be assumed to be a simple wave region. Consequently, the flow parameters along the
lines BF and DE remain constant. At point E where the sonic throat is located, the
flow direction should be parallel to the plane of symmetry (i.e. the x-axis). Again by
using the Prandtl–Meyer relation one gets

ν(MD)− ν(M2) = θ3 (13)

and

pD = p2

[
2 + (γ − 1)M2

2

2 + (γ − 1)M2
D

]γ/(γ−1)

. (14)

The set of equations (2), (3), (5) to (7) and (11) to (14) consists of nine equations with
nine unknowns, i.e. MC,MC ′ ,MD, pC, pC ′ , pD, φC, θC ′ and α. Consequently, it is complete
provided all the other parameters are known, as indeed is the case.

2.3. The free of downstream influence condition

An inspection of the flow field shown in figure 2 clearly indicates that as long as
the downstream pressure, pw , is smaller than the pressure along the characteristic
GCDE, say, pC , the flow upstream of GCDEK is isolated from downstream effects,
i.e. it cannot be affected by the downstream pressure, pw . Furthermore, as long as
pw < pC the characteristic GCDE is independent of the angle of the trailing edge of
the reflecting wedge, θe . As a result the throat of the converging nozzle formed by
the slipstream and the plane of symmetry line is fixed at point E, and the Mach stem
height is independent of the trailing-edge angle, θe. This fact was recently verified by
Ben-Dor et al. (1997b) both numerically and experimentally.

The foregoing discussion could be summarized by concluding that the size of the
Mach reflection wave configuration, in general, and the height of its Mach stem, in
particular, are independent of the downstream pressure as long as

pw 6 pC. (15)

A schematic drawing of the Mach reflection wave configuration corresponding to
this condition is shown in figure 2. The domains in which this configuration is either
dependent on or independent of the downstream pressure, pw , for a fixed incident
angle φ1 = 40◦ in the

(
pw/p0,M0

)
-plane are shown in figure 4. The solid boundary

line separating these domains has been calculated using the present analytical model.
The numerical points that are added to figure 4 will be discussed subsequently.
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2.4. The dependence on the downstream pressure

When the downstream pressure, pw , exceeds the pressure pC the Mach reflection wave
configuration is no longer isolated from downstream effects: then, the value of the
downstream pressure, pw , with respect to the incident-shock-induced pressure, p1, is
the parameter controlling the flow field.

Schematic drawings of the Mach reflection wave configurations for three different
cases are shown in figure 5. The case for which p1 > pw > pC is shown in figure 5(a).
Unlike the Mach reflection shown in figure 2 for which pw < pC here the throat is
not formed by the primary expansion fan emanating from the trailing edge of the
reflecting wedge but by a secondary expansion fan which results from the interaction
of the free boundary of the separating zone, GG′, i.e. the separation line, with the
transmitted-reflected shock wave, r′. (Details of the orientation of the separation line
can be found in Schotz et al. 1997.)

An analytical model for calculating the interaction between the primary expansion
fan, emanating from the trailing edge of the reflecting wedge, point G in figure 2,
and the slipstream which result in the throat at point E was presented in detail by
Li & Ben-Dor (1997). The model equations, together with the equations developed
by Li & Ben-Dor (1998) when they dealt with an over-expanded supersonic nozzle,
can be applied in a similar manner to calculate the interaction between the secondary
expansion fan, emanating from point G′ in figure 5(a), and the slipstream which result
in the throat at point E′.

The dependence of the normalized Mach stem height, Hm/H , on the downstream
pressure, pw/p0, for M0 = 4.96 and φ1 = 40◦ as calculated using the present analytical
model is shown in figure 6 (the numerical points, added to the figure, will be discussed
subsequently). It is clearly evident that as long as pw 6 pC the Mach stem height is
constant as the entire MR wave configuration is isolated from downstream effects.

Once the downstream pressure, pw , exceeds pC the Mach reflection is pushed
upstream and as result its Mach stem height increases. The higher pw is the larger
the Mach stem height becomes. The increase in pw causes the primary expansion
fan to weaken until it practically vanishes when pw = p1. The wave configuration
corresponding to this situation is shown in figure 5(b). The dependence of the
normalized Mach stem height, Hm/H , on the angle of incident, φ1, for M0 = 4.96 and
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Figure 5. Schematic illustration of Mach reflection wave configurations for (a) p1 > pw > pC,
(b) pw = p1 and (c) pw > p1.

pw = p1 is shown in figure 7. It is clearly evident from this figure that the Mach stem
vanishes, i.e. Hm → 0, at φ1 = 30.9◦, in perfect agreement with the von Neumann
MR→RR transition angle.

It is also important to note that G′R′, in figure 5(b), is the minimum distance
for which the flow in the nozzle, formed by the reflecting wedge and the plane of
symmetry, could be started. Hence the reflecting wedge could be extended as shown
by the shadowed area without causing any change in the flow field. Any further
extension of the wedge would result in a situation in which a supersonic flow cannot
be established in the nozzle. (More details regarding this situation can be found in
Vuillon et al. 1995 and Li & Ben-Dor 1997.)

When pw exceeds p1, the wave configuration shown in figure 5(c) is obtained. Now
a shock wave, GO, rather than an expansion fan emanates from the trailing edge
of the reflecting wedge. The throat is formed in a way similar to that shown in
figure 5(a), i.e. by the expansion fan which results in from the interaction between
the free boundary of the separation zone and the transmitted-reflected shock wave.
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Unfortunately, the flow field associated with the wave configuration shown in figure
5(c) is more complicated that those shown in figures 5(a) and 5(b), and hence an
analytical solution of this Mach reflection wave configuration is not available yet.

3. The numerical study
3.1. The numerical method

During the last decade explicit monotonic schemes of high-order accuracy employing
essentially nonlinear difference schemes have been widely used in computational fluid
dynamics. The principal concept employed in the overwhelming majority of these
methods was the use of conservative flux corrections through the cell boundaries for
a regular linear first-order scheme. The nonlinearity of these corrections and non-
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uniform mesh used in the calculations rendered the well-known theorem of Godunov
invalid (e.g. Hirsch 1990).

Using similar one-dimensional corrections for each of the spatial coordinates allows
the construction of monotonic second-order-accurate methods for two-dimensional
conservation laws employing either coordinate splitting schemes (e.g. Hirsch 1990,
chapter 20) or predictor-corrector type schemes (e.g. Hirsch 1990, chapter 17). How-
ever, these methods are computationally expensive since they employ multistage
computations at each time step. Attempts to cut the number of computational stages
while preserving the one-dimensional corrections may reduce the accuracy of the
scheme to a first order in time. This is acceptable for solving stationary problems but
is inappropriate for treating truly non-stationary problems.

A new second-order-accurate in space and time modification of Godunov’s scheme
(e.g. Hirsch 1990, chapter 20) for a system of conservation laws which employs correc-
tions at the two-dimensional stencil (W-modified Godunov’s scheme) has been used
in the present numerical calculations. For details see Vasiliev (1996). The scheme uses
additive corrections to fluxes in the governing system of equations (Euler equations)
with the subsequent employment of the first-order-accurate Godunov scheme to the
modified system of equations (with corrections to the fluxes). It can be proved that
such a procedure provides a second-order-accurate in space and time solution of the
Euler equations. The method was realized on a W-stencil with orientation depending
on the local flow velocity (eigenvalues of the matrices in the conservation laws). The
method can be viewed as a combination of the van Leer and Harten schemes (van
Leer 1979; Harten 1983). In the following only the general idea of the scheme is
described. More details can be found in Vasiliev (1996).

Consider a system of hyperbolic equations written in a conservative form:

∂ω

∂t
+
∂f(ω)

∂x
+
∂g(ω)

∂y
= 0, (16)

where ω(x, y, t) is an m-component vector and f(ω) and g(ω) are the vectors of the
fluxes. Then, the first-order Godunov scheme applied to the modified equation:

∂ω

∂t
+
∂f(ω + α)

∂x
+
∂g(ω + β)

∂y
= 0 (17)

provides a second-order-accurate in space and in time solution of equation (16) if

α =
∆x

2
sgn

∂f(ω)

∂ω

∂ω

∂x
+

∆t

2

∂ω

∂t
(18)

and

β =
∆y

2
sgn

∂g(ω)

∂ω

∂ω

∂y
+

∆t

2

∂ω

∂t
. (19)

The nonlinear approximation of the terms α and β during the numerical solution
is performed using a W-stencil with orientation depending on the flow velocities
(i.e. eigenvalues of the matrices ∂f(ω)/∂ω and ∂g(ω)/∂ω). It can be shown that the
suggested selection of α and β in the case of a scalar linear equation, ensures the
monotonicity of the solution under the same values of the Courant number as the
regular Godunov scheme.

In the calculations of the shock waves reflection and the hysteresis phenomenon
(which will be presented subsequently) the W-modification of Godunov’s scheme
was used with an adaptive curvilinear grid which moved with the Mach stem. In
order to resolve the incident shock wave, the Mach stem and the flow separation
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line a front tracking technique was employed. (see Kraiko, Makarov & Tillyaeva
1980). The boundary condition p = pw was imposed on the flow separation line. The
grid consisted of 200 cells in the horizontal and 100 cells in the vertical directions,
respectively. The stationary solutions were calculated in the following way.

The downstream pressure, pw , was varied in a piecewise constant manner. Namely,
first the downstream pressure was set equal to the incident-shock-wave-induced
pressure, p1 (i.e. pw = p1) and kept constant at this value during the time interval
∆t1. Then pw was increased linearly, during the time interval ∆t2 by a value of ∆pw
and again kept constant at its new value during the time interval ∆t1. This procedure
was repeated until the required downstream pressure value was reached. Then the
sign of the pressure increment, ∆pw , was changed, and the process was repeated
in the reversed direction until the initial downstream pressure (i.e. pw = p1) was
attained. The linear time interval, ∆t2, was set equal to 200–300 time steps. The
time interval ∆t1 was set much larger, i.e. several thousand time steps, in order to
obtain a stationary solution. The attainment of the stationary solution was checked
by numerically calculating both the norm of the difference between two solutions at
consecutive time step and the velocity of the Mach stem.

The non-reflecting boundary conditions (see e.g. Hirsch 1990, pp. 344–401 and
references therein) were employed at the exit. Since the flow above the slipstream is
supersonic the influence of the boundary conditions on the solution was rather weak.
Subsonic patches in the flow are located under the slipstream, and they alternate with
supersonic patches. Therefore, even when the exit boundary lies inside a subsonic
zone the perturbations from this zone penetrate upstream only to the nearest super-
sonic zone. Although under these circumstances even simple extrapolation boundary
conditions would perform quite well, the non-reflecting boundary conditions were
chosen since they result in a faster convergence towards the stationary solution.

3.2. The numerical results

Case 1: pw < p1

The Mach reflection wave configurations for M0 = 4.96, φ1 = 40◦, θe = 30◦ and 10
different values of pw/p0 are shown in figures 8(a) to 8(j). The free of downstream
influence condition for this case is pw/p0 6 pC/p0 = 6.32. In addition, since for this
case p1/p0 = 11.69, for all the cases shown in figure 8 pw < p1, i.e. an expansion fan
emanates from the trailing edge of the reflecting wedge.

An inspection of figures 8(a) to 8(j) clearly indicates that the Mach stem height
remains constant as long as pw 6 pC in perfect agreement with the analytical predic-
tions of the previous sections. Once pw exceeds pC the triple point is pushed upstream
and the Mach stem height increases.

Figures 8(a) to 8(j) also illustrate how the primary expansion fan emanating from
the trailing edge of the reflecting wedge weakens as the downstream pressure increases.
While a very wide expansion fan is seen in figure 8(a), they progressively become
narrower as the downstream pressure increases. Had the downstream pressure, pw ,
exceeded p1 the expansion fan would have been replaced by a shock wave as shown
schematically in figure 5(c).

As a consequence of the weakening of the expansion fan the actual deflection of the
flow around the trailing edge of the reflecting wedge decreases and the free boundary
of the separation zone is seen to rotate in the clockwise direction. Note that while for
pw/p0 = 1 (figure 8a) the separation line is almost horizontal, for pw/p0 = 10 (figure
8j) the separation line almost coincides with the surface of the reflecting wedge.

It should also be noted here that as a result of this rotation of the separation line, the
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Figure 8. Numerical calculations of the density contours of Mach reflection wave configurations
for M0 = 4.96 and φ1 = 40◦(θw = 28.21◦), and ten different values of pw/p0; H/L = 1.096, Grid
200× 100.

secondary expansion fan, i.e. the one resulting from the interaction of the separation
line with the transmitted-reflected shock, becomes more and more dominant. While
for pw/p0 = 1 (figure 8a) it does not interact with the slipstream, for pw/p0 = 10
(figure 8j) it is seen to have a strong influence on the slipstream shape in general and
the location of the sonic throat in particular.

Note also that the flow field between the two expansion fans is almost uniform. It
is only slightly perturbed by weak compression waves that result from the reflection
of the primary expansion waves from the slipstream.
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It is also evident from figure 8 that between pw/p0 = 4 (figure 8d) and pw/p0 = 6
(figure 8f) the flow field is uniform between the waves of the two expansion fans which
penetrated through the slipstream. (An inspection of flow Mach number contours
indicates that the flow field between these two expansion fans is supersonic. Hence the
primary expansion fan is isolated from the secondary one through which information
regarding the downstream pressure is communicated.) The slipstream between the tail
of the primary expansion fan and the head of the secondary expansion fan is almost
parallel to the plane of symmetry.

For 1 6 pw/p0 6 6 (figures 8a to 8f) the position of the Mach stem remained
unchanged. However, as can be seen from figure 8(g) at pw/p0 = 7, the waves of
the primary expansion fan are locked in the converging subsonic region of the flow
downstream of the Mach stem. Thus, for this condition, the downstream pressure can
influence the Mach reflection wave configuration, as indeed is the case in figure 8(g)
where a small shift in the Mach stem location is evident. As the downstream pressure
further increases (see figures 8h to 8j) the Mach stem shifts further upstream.

The normalized Mach stem heights as calculated numerically were added to the
analytical prediction shown in figure 6. As can be seen the agreement between
the analytical prediction and the numerical results is good; the difference could be
attributed to the over-simplifying assumptions of the analytical model.

In order to better understand the mechanism generating the sonic throat in the
flow field, the cases for pw/p0 = 5, 6 and 7, shown in figures 8(e) to 8(g), respectively,
are redrawn in figures 9(a) to 9(c) using constant flow Mach number contours rather
than constant density contours. Recall that the analytically predicted value of pC/p0

for this case is 6.32. For the reader’s convenience, the subsonic patch in the flow field
is shaded in figure 9. In the case shown in figure 9(a), for which pw/p0 < pC/p0 the
sonic throat is formed by the primary expansion fan emanating from the trailing edge
of the reflecting wedge in a way similar to that shown schematically in figure 2. On
the other hand, in the case shown in figure 9(c), the sonic throat is formed by the
secondary expansion fan that results from the interaction of the free surface of the
separation zone with the transmitted-reflected shock wave in a way similar to that
shown schematically in figure 5(a).

It is important to note that the kinks and undulations which are observed in the
waves of the expansion fans are a result of their reflection from the slipstream. For
explanatory purposes the case shown in figure 8(h) is redrawn in more detail in figure
10. Note that while the primary expansion fan reflects from the subsonic part of
the slipstream as a compression wave, the secondary expansion fan reflects from the
supersonic part of the slipstream as an expansion wave. The reflected compression
and expansion fans interact with the primary and secondary expansion fans to result
in a complex flow field. It is also evident from figure 10 that owing to the existence
of a slight pressure gradient behind the Mach stem the flow field behind the reflected
shock wave is not uniform.

Case 2: pw = p1

The wave configurations for M0 = 4.96, pw = p1 and four different values of incident
shock wave angle φ1 are shown in figures 11(a) to 11(d). The wave configurations in
figures 11(a) to 11(c) where a Mach reflection is obtained are similar to the schematic
illustration shown in figure 5(b). It is clearly evident that as φ1 decreases the Mach
stem height decreases until a transition from Mach to regular reflection is obtained
between φ1 = 32◦ and 30◦.

The numerical results of the Mach stem height as a function of the angle of



226 G. Ben-Dor, T. Elperin, H. Li and E. Vasiliev

pw /p0 =5

(a)

6

(b)

7

(c)

Figure 9. Numerical calculations of the flow Mach number contours of
the three cases shown in figures 9(e) to 9(g).

incidence were added to figure 7. Both the analytical and the numerical results
excellently predict the transition value. The reason why the analytical prediction of
the transition is so good, for this case, is due to the fact that the over-simplifying
assumptions in the analytical model become strictly valid when the Mach stem height
approaches zero, i.e. Hm → 0.

It is important to note that the kinks seen in the waves of the expansion fan are
a results of its reflection from the slipstream. This interaction is similar to the one
considered earlier (see figure 10).

Case 3: pw > p1

Numerical simulations for the case shown in figure 5(c), in which pw > p1 and hence
a shock wave emanates from the trailing edge of the reflecting wedge, are shown in
figures 12(a) to 12(m). The initial conditions for these simulations are M0 = 4.96,
φ1 = 29.5◦ and hence p1/p0 = 6.79. These results were obtained in the following
way. First the case with pw/p0 = 10 > p1/p0 was solved. Then, the final results for
pw/p0 = 10 were used as the initial conditions for pw/p0 = 12. This procedure was
repeated until the value pw/p0 = 22 was reached. Then pw/p0 was decreased, again by
using the final results of the previous case as the initial conditions for the next case
until the value pw/p0 = 10 was reached again.

As can be seen from the results shown in figures 12(a) to 12(m) a hysteresis exists in
the reflection phenomenon. While the transition from regular to Mach reflection was
obtained between pw/p0 = 18 and 20 (see figures 12e and 12f), the reversed transition
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(a)

(b)

(c)

Figure 10. Detailed numerical results for (a) density, (b) pressure and (c) Mach number contours
for the case shown in figure 8(h): M0 = 4.96 and φ1 = 40◦ (θw = 28.21◦), pw/p0 = 8, H/L = 1.096,
Grid 200× 100.

from Mach to regular reflection was obtained between pw/p0 = 12 and 10 (see figures
12l and 12m).

Figures 13(a) to 13(e) show the process between pw/p0 = 18 and 20 with smaller
steps of 0.5 in pw/p0. Based on these simulations the transition from regular to
Mach reflection occurs in the range 19.5 < pw/p0 < 20. It is very important to note
that the von Neumann angle for the flow conditions of the calculations shown in
figures 12 and 13 is φN1 = 30.9◦. Thus, based on the three-shock theory, a direct-
Mach reflection wave configuration cannot be obtained for φ1 < 30.9◦. Consequently,
the Mach reflection wave configurations shown in figures 12(f) to 12(l) and figure
13(e), for which φ1 = 29.5◦ < φN1 , are inverse-Mach reflections in which, unlike the
configuration of a direct-Mach reflection such as that shown in figure 2, the slipstream
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Figure 11. Numerical calculations of the flow Mach number contours of the wave configu-
rations for M0 = 4.96, pw = p1 and four different values of incident shock wave angle, φ1.

is directed away from the line of symmetry. For more details on the inverse-Mach
reflection see Takayama & Ben-Dor (1985) and Ben-Dor & Elperin (1991). To the
best of the authors’ knowledge, inverse-Mach reflections have not been observed yet
in the reflection of symmetric shock waves in steady flows.

The fact that Mach reflection wave configurations are obtained for φ1 < φN1 when
the downstream pressure is sufficiently high can explain the experimental results of
Hornung & Robinson (1982) which were not published directly by them but were
reported by Azevedo (1989) who obtained the raw optical records from Hornung.
These records clearly showed Mach reflection wave configurations in the domain
φ1 < φN1 in which, theoretically, they are impossible.

As a final remark it should also be noted that the hysteresis shown in figures
12(a) to 12(l) is different from the hysteresis hypothesized by Hornung et al. (1979)
and verified experimentally by Chpoun et al. (1995): while the hysteresis there was
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Figure 12. Numerical calculations of the density contours of the wave configurations for M0 = 4.96
and φ1 = 29.5◦ and thirteen different values of pw/p0. Note that in all the cases pw/p0 > p1/p0;
H/L = 0.566, Grid 220× 60.

incident-shock-wave-angle dependent the one shown here is downstream-pressure
dependent.

The downstream-pressure-induced hysteresis loop is shown in figure 14 in the
(Hm/L, pw/p0)-plane. As can be seen the MR→RR transition accurs at pw/p0 = 19.63
and the reverse RR→MR transition occurs at pw/p0 = 10.00. Both the MR→RR
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Figure 13. Numerical calculations of the density contours of the wave configurations for M0 = 4.96
and φ1 = 29.5◦ and five different values of pw/p0 which cover the range in which the transition
from regular to Mach reflection takes place.

and the RR→MR transitions are associated with a sudden disappearance and
appearance of a finite-size Mach stem.

4. Conclusions
Analytical and numerical investigations of the effect of the downstream pressure

on the shock wave configuration in steady flows were conducted. The criterion for the
reflection to be free of downstream-pressure effects was established. In addition, it was
shown that depending on whether the downstream pressure is smaller than, equal to
or larger than the incident-shock-induced pressure, three different wave configurations
are possible. They differ in the type of wave emanating from the trailing edge of the
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Figure 14. The downstream-pressure-dependent hysteresis loop in the
(
Hm/L, pw/p0

)
-plane. Note

the sudden appearance of the Mach stem in the RR→MR transition at pw/p0 = 19.32.

reflecting wedge. When the downstream pressure was larger than the incident-shock-
induced pressure the inverse-Mach reflection, which has not been observed so far in
the reflection of symmetric shock waves in steady flows, was established.

The present results could probably be used to explain the hysteresis phenomenon
which was recorded experimentally by Henderson & Lozzi (1979) using symmetric
concave wedges. Owing to the fact that the wedges were concave the compression
waves which emanated from their surfaces could have been the mechanism generating
the high downstream pressure required to obtain the hysteresis with an inverse-Mach
reflection.

The results of the present study could be useful in better understanding the stability
of the flow through supersonic intakes, such as jet engines, which are exposed to either
continuous or sudden (shock wave impact) changes of the surrounding pressure at
their exits.

We acknowledge support for this research by the Israel Science Foundation, under
Grant No. 173/95.
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